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We focus on the problem of modeling time series by learning statistical correlations between the past
and present elements of the series in an unsupervised fashion. This kind of correlation is, in general,
nonlinear, especially in the chaotic domain. Therefore the learning algorithm should be able to extract
statistical correlations, i.e., higher-order correlations between the elements of the time signal. This prob-
lem can be viewed as a special case of factorial learning. Factorial learning may be formulated as an un-
supervised redundancy reduction between the output components of a transformation that conserves the
transmitted information. An information-theoretic-based architecture and learning paradigm are intro-
duced. The neural architecture has only one layer and a triangular structure in order to transform ele-
ments by observing only the past and to conserve the volume. In this fashion, a transformation that
guarantees transmission of information without loss is formulated. The learning rule decorrelates the
output components of the network. Two methods are used: higher-order decorrelation by explicit eval-
uation of higher-order cumulants of the output distributions, and minimization of the sum of entropies
of each output component in order to minimize the mutual information between them, assuming that the
entropies have an upper bound given by Gibbs second theorem. After decorrelation between the output
components, the correlation between the elements of the time series can be extracted by analyzing the
trained neural architecture. As a consequence, we are able to model chaotic and nonchaotic time series.
Furthermore, one critical point in modeling time series is the determination of the dimension of the
embedding vector used, i.e., the number of components of the past that are needed to predict the future.
With this method we can detect the embedding dimension by extracting the influence of the past on the
future, i.e., the correlation of remote past and future. Optimal embedding dimensions are obtained for
the Hénon map and the Mackey-Glass series. When noisy data corrupted by colored noise are used, a
model is still possible. The noise will then be decorrelated by the network. In the case of modeling a
chemical reaction, the most natural architecture that conserves the volume is a symplectic network
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which describes a system that conserves the entropy and therefore the transmitted information.

PACS number(s): 02.50.—r, 89.70.+c, 05.45.+b

I. INTRODUCTION

Modeling time series by learning from experiments can
be viewed as the extraction of statistical correlations be-
tween the past and future values of the time series signals.
In particular, in the case of chaotic series, due to their
short-term predictability, a thorough study of statistical
correlations between components of the embedding vec-
tor yields the only way to distinguish between a purely
random process and a chaotic deterministic series, even-
tually corrupted by colored or white noise. In fact, most
of the relevant dynamic invariants that characterize such
series are measures of these correlations between past
values and the future evolution of the time series. The
two most important of these are the largest Lyapunov ex-
ponent which contains information on how far in the fu-
ture predictions are possible, i.e., how far the future is
statistically correlated with the past [1], and the correla-
tion dimension which measures the information con-
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tained in the attractor [2]. Long-term forecasting of the
behavior of chaotic systems is not possible due to the ex-
ponential divergence of trajectories in such systems [3].
Several authors [4—8] proposed a great variety of non-
neural models that yield very accurate results for short-
term prediction. Neural network modelings were also
implemented using supervised learning paradigms (.e.,
paradigms for learning with a teacher) and feedforward
[9-13] or recurrent architectures [14]. But the problem
of extracting statistical correlations in a sensorial envi-
ronment is the subject of unsupervised learning (i.e., the
only available information is in the correlations of the in-
put data, and no teacher is present). In fact, Barlow
[15,16] proposed the principle of redundancy reduction
as the goal of unsupervised learning. The brain performs
statistical decorrelation of the input environment in order
to extract statistically independent relevant information.
The goal of redundancy reduction is to factorize the in-
put probability distribution without loosing information.
In the linear case Barlow’s principle yields a learning rule
that performs a principal component analysis (PCA). In
fact, PCA can be derived as a linear transformation
which conserves transmission of information and mini-
mizes the mutual information between the outputs in or-

1780 ©1995 The American Physical Society



51 LEARNING TIME SERIES EVOLUTION BY UNSUPERVISED . ..

der to decorrelate them. Some nonlinear extensions of
PCA for decorrelation of sensorial input signals were re-
cently introduced [17-20]. Atick and Redlich [17,18]
and Redlich [19,20] concentrate on the original idea of
Barlow obtaining a very interesting formulation of early
visual processing and factorial learning. Redlich [20]
reduces redundancy at the input by using a network
structure which is a reversible cellular automaton and
therefore guarantees the conservation of information in
the transformation between input and output.

The aim of the present work is to formulate an archi-
tecture and a learning paradigm for the unsupervised ex-
traction of statistical correlations between the past and
future elements of a time signal in order to model the
behavior of the dynamical system. This model performs
Barlow’s unsupervised learning in the most general
fashion. In other words, we implement a nonlinear prin-
cipal component analysis for the extraction of causal sta-
tistical correlations between the past and future of a time
signal obtained from observations on a chaotic dynamical
system. In this form, we extend the standard statistical
techniques (e.g., PCA) which are applied for the model-
ing of dynamical systems.

We employ a single layer architecture that attempts to
extract correlations considering only the past relative to
each element of an embedding vector. The architecture
is always reversible, conserves the volume and therefore
the transmitted information. In general, the environment
is non-Gaussian distributed and nonlinearly correlated.
The learning rule decorrelates statistically the elements of
the output by two different methods: statistical decorre-
lation by consideration of higher-order cumulants, or
minimization of an upper bound of the mutual informa-
tion between the components of the output using Gibbs
second theorem. In the case where a coupled system of
chemical reactions is modeled, i.e., equations are extract-
ed from data, a symplectic architecture for the decorrela-
tion between fluxes and concentration is employed. This
architecture is a special case of an information conserv-
ing network. Put differently, we apply the herein intro-
duced generalization of factorial learning of nonlinear
and non-Gaussian environments to the special case of dy-
namic modeling of chaotic time series or dynamical
chemical systems. In the case of chaotic modeling the
method yields an information-theoretic-based theory for
the determination of the embedding dimension which is a
very actual problem in modern chaos research (see Refs.
[21-24]). In the modeling of chemical systems, the
method yields a way to extract the chemical kinetics of
the participant elements by learning from data. The
theory is illustrated by various examples.

II. DYNAMICAL MODELING

Before formulating the model we introduce in this sec-
tion the basic assumption for the modeling of determinis-
tic chaotic systems and coupled chemical reactions.

A. Deterministic chaos

For modeling a chaotic system from the observation of
measures realized on the chaotic attractor we review
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briefly the Takens methods [25] which is called phase-
space reconstruction, and results in a d-dimensional
“embedding space” in which the dynamics of the multidi-
mensional attractor is captured.

Let us assume a time series of a single (one-
dimensional) measured variable of a multidimensional
dynamical system. The aim of forecasting is to predict
the future evolution of this variable. It has been shown
that in nonlinear deterministic chaotic systems it is possi-
ble to determine the dynamical invariants and the
geometric structure of the many-variable dynamic system
that produces the single measurement [25,26] from the
observation of a single dynamical variable.

Given is a chaotic system

y(t +1)=g(y(¢s)) . (1)
Let us define an observable measurement
x()=f(y(2)) . (2)

The Takens theorem assures that for an embedding

En=(x(t),x(t—7),...,x(t —d7)) A3)
a map
E(r +1)=F(&(2) 4)

exists which has the same dynamical characteristics as
the original system y(z) if d =2D +1 where D is the di-
mension of the strange attractor. This sufficient condi-
tion may be relaxed to d > 2D [25]. The theorem implies
that all the coordinate-independent properties of g( ) and
F( ) will be identical. The proper choice of d and 7 is an
important topic of investigation [21-24]. The goal of un-
supervised neural network modeling is to learn the map
given by F( ) in Eq. (4), by learning the statistical correla-
tions between the time successive elements (future from
the past) of the embedding vector by observing the
different training embedding patterns.

It is important to remark that the Takens theorem
offers a method for modeling noise-free chaotical time
series. When noise is added the embedding dimension
method has serious problems (see, for example, Refs. [27]
and [28]). In this paper, however, we used in one exam-
ple a chaotic system (logistic map) perturbated with
colored noise, and we have obtained a good result in the
sense that the correlation between the embedding coordi-
nates were extracted in spite of the noise, which was also
decorrelated.

B. Chemical kinetic equations

In this case we would like to model a nonchaotic sys-
tem of coupled first-order differential equations. Typical-
ly the form of the system is binomial, i.e.,

X K +K, X1 +% @ K®X, 5)
E—kl'i‘sz(t) X([)® @X(t) N
where X(¢) is a column vector whose elements are the
concentrations of the different reactants at time ¢t. The
vectors k;, the matrices K,, and the third-order tensor K
contain the kinetics of the chemical system. The symbol
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® means tensorial product. The goal of learning in this
case is to find the kinetic constants, and which reactions
explain the experiments, i.e., the kinetics of the
stoichiometry of the chemical system. The data consist
of the time evolution of the concentration vector X(2)
(measured concentrations).

III. UNSUPERVISED EXTRACTION
OF STATISTICAL CORRELATIONS

In this section we present the architecture and the
learning paradigm that perform an unsupervised extrac-
tion of correlations in the input given by the embedding
vector of a time series by reducing the redundancy be-
tween the extracted features and conserving the informa-
tion. Let us define an input vector X of dimension d dis-
tributed according to the probability distribution p(X)
which is not factorial, i.e., the components of X are corre-
lated. The goal of Barlow’s unsupervised learning rule is
to find a transformation

y=F(%) (6)

such that the components of the d-dimensional output
vector ¥ are statistically decorrelated, i.e.,

d
PE=TIP) , @)

and the information is transmitted without loss. The
transformation F will be performed by a neural network.
The constraint of perfect transmission of information for
deterministic neural networks is equivalent to the condi-
tion of invertibility of the network. We use in this work
information theory for the formal presentation of the
model. Let us define a measure of the transmission of in-
formation, i.e., the mutual information H (¥;X) between
input and output should be [29]

H(y;X)=H(X)—H(X/Y), (8)

where the symbol H (@) indicates the Shannon entropy
[29] of @, and H(a/b) the conditional entropy of @, given
by b. The transmitted entropy satisfies

HH<HE+ [P |det |2E | 4%, ©)

where equality holds only if Fis bijective, i.e., reversible.
Conservation of information and bijectivity is assured if
the neural transformation conserves the volume, which
mathematically can be expressed by the fact that the
Jacobian of the transformation should have determinant
unity, i.e.,

3F

X

det =1, ' (10)

where OF /0% is the Jacobian matrix of the neural net-
work transformation. We formulate an architecture that
conserves always the volume, independent of the values
of its weights. Using (10) we can reduce (9) to

H(Y)=H(X) . (an

The architecture employed in this paper is shown in

Fig. 1(a). The dimensions of input and output layer are
the same and equal to d. Redlich [20] proposed this kind
of architecture using the theory of reversible cellular au-
tomata. The analytical definition of the transformation
defined by this architecture can be written as

yi=x;+fi(xg,...,x;,6;) with j <i (12)

where @; represents a set of parameters of the function
fi- Note that independent of the functions f;, the net-
work is always volume conserving and satisfies Eq. (10).
In particular, f; can be calculated by another neutral net-
work, by a sigmoid neuron, by polynomials (higher-order
neurons), etc. Due to the asymmetric dependence on the
input variables and the direct connections with weights
equal to one between corresponding components of input
and output neurons, the Jacobian matrix of the transfor-
mation in Eq. (12) is an upper triangular matrix with di-
agonal elements all equal to one, yielding a determinant
equal to one. In this paper we will use higher-order net-
works. The functions f; are assumed to be polynomial.
The outputs are given by the following update equations:
i—1 i~1
yi=xit Yoyx;+ ¥ opxgx;+ . (13)
j=0 jk=0
The triangular structure of this network not only assures
conservation of entropy in the transmission from the in-
puts to the outputs but also a transformation that at-
tempts to decorrelate a component from only the past
components which is the kind of correlation that we need
in time series modeling.
Figure 1(b) shows another volume-conserving architec-

(a)

Xy X2 ees AN

(®)

. . .-"

FIG. 1. (a) Volume-conserving neural architectures. (b) Sym-
plectic neural architecture for flux modeling of coupled chemi-
cal reactions.
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ture convenient for modeling a system of coupled chemi-
cal equations as given by Eq. (5). In this case only one
point in the past is necessary for each concentration. The
connections included are sufficient for building the map
of the flux. The flux is obtained as a function of only the
past value of the concentrations. The network of Fig.
1(b) is not only volume conserving but also ‘“‘symplectic”
[30]. A symplectic transformation satisfies the following
equation:

T ~
oF )3
Syv=|— | Sv|— |, (14)
N o N | ax
where
0 —1I
Sy= I 0 (15)

and I is the unity matrix. By using Eq. (14) it is easy to
prove that the composition of symplectic transformations
is also symplectic. The Jacobian associated with the ar-
chitecture of Fig. 1(b) has the form

I w
o 1

aF
X
which satisfies (14). The fact that this architecture con-
serves the information has its correspondence in statisti-

cal mechanics in the conservation of entropy for conser-
vative systems. The update equations are given by

yi=x;, i=1,...N (17)

(16)

=X+ Ewu x;+ 2 XXt
Jrk=0

i=N+1,...,2N (18)

where x; =0x,/dt and y; is the output of the network.
After training, the outputs y;, i=N +1,...,2N should
be constants, which indicates decorrelation between the
concentration x; and the flux x;.

Let us now concentrate on the second aspect of factori-
al learning, namely the decorrelation of the output com-
ponents. Here the problem is to find an invertible trans-
formation that satisfies Eq. (7). The major problem is
that the distribution of the output signal is not necessari-
ly Gaussian.

We now present two techniques to achieve this goal.
The first consists of the decorrelation of non-Gaussian
distributions by analyzing the decomposition of higher-
order cumulants. The second consists of minimizing the
mutual information between the components of the out-
put. In this last case we use the second theorem of Gibbs
for minimizing an upper bound.

A. Cumulant expansion

In order to decorrelate non-Gaussian distributions we
expand the output distribution in higher orders of the
correlation matrix and impose the independence condi-
tion (7). In order to achieve this we propose to use a cu-
mulant expansion of the output distribution.

Let us define the Fourier transform of the output dis-
tribution,

¢(K)=fdy'e"‘f'?“P<?), (19)
$(K,)= [dy,e" " P(y,) . (20)
The cumulant expansion of a distribution is [31]
—_— © n d
$(K)=exp |3 — 3 R KK K |,
n=1"" iy, sy
21
$(K;)=exp |3 —R(”)K" } (22)
n =1

The cumulants R}” and R,
given in Ref. [31].

In Fourier space, the independence condition is given
by [31]

#(K)=[]4(K;) 23)

i, of Egs. (21) and (22) are

which is equivalent to
In(¢(K))=3 In¢(K;) . (24)
Putting (24) and the cumulant expansions of (21) and (22)

together we obtain that in the case of independence the
following equality is satisfied:

i
27{,‘ 2 'Ril,...,inKilKiz'“Ki

n

d
—2

f‘, N‘"’K"]. 25)

n=l

The first four multidimensional cumulants are given by

R, =i, (26)
R, =C,—77; » @7
R =Cip —Cii¥r —Cpyi —Cuy; T2V 9k » (28)
Rt = Cijia — Cie¥1 — Cijp ¥ — Can ¥
—Cyi —C;jCry — Cy C;; — C; C;
T Ci ¥y +Cu ¥y +Cy¥;¥ +C iy
+C¥iyi +Cuyiy; — 69 Y911 > 29)
where
yi= f dyyP(y;) . (30)

The first four one-dimensional cumulants can be de-
rived similarly or can be taken from Ref. [31]. They are
the following:

R(V=p, , (31)
N‘”—C‘Z)—y, , (32)
N§.3)=C}3) C(Z yl , (33)
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R¥=C/*—3(C?)?~4C¥5,+12CY 57— 65! , (34)

where the multidimensional higher-order moments C; ... ;
are defined as

Ci...;=[dy(P(FW -y}, (35)

and the one-dimensional higher-order moments C™ are
given by
J

i
_%EKin { Cij _Ci(Z)Sij } - g E KinKk { Cijk _Ci(3)8ijk }
ij i,j,k

ci= [dy/P(y))y)" . (36)

In order to remove the bias (y) we perform an extra
transformation

y=y—H). 37

We may rewrite Eq. (25) using the cumulants expression:

+L > K,.KijK,{(c,.jk,—3C,.jck,)—[ci(4>—3(c,.<2>)2]5,.jk,}=0. (38)

i,j, k1

The §,...; denote Kroenecker’s delta. Due to the fact
that Eq. (38) should be satisfied for all K, all coefficients
in each summation must be zero. This means that

C,;—C¥5,=0, Vij (39)
C,-jk—Ci(S)Sijk=0 ) Vl,],k (40)
(Cijry—3C;iCi)—[CP =3(CP)?18,3, =0, Vi, j,k,I

41)
or, equivalently,
C;=0, if (i#)) (42)
Cix =0, if (i7jViFk) (43)
Cij=0, if ({i#jVizFk Vi#I} A —L) (44)
Ciyj—CyC;; =0, if (i7)) . (45)
In (44) [ is the logical expression

L={(i=jANk=INjFK)Vi=kNj=INiF])

Vi=IAj=kNi7j)} (46)

which excludes the cases considered in Eq. (45). The con-
ditions of independence given by Egs. (42)—(45) can be
achieved by minimizing the cost function

E=ay Cizj +B 3 Cht+r 3 Cly
1<j i<j<k i<j<k=lI
_ 2
+82.( Ciijj—CuCj) 47
i<j
where a, 3, 7, 8 are the inverses of the number of ele-
ments in each summation, respectively. It is very easy to

test whether a factorized probability distribution [Eq. (7)]
satisfies the Eqgs. (42)—(45).

B. Minimization of mutual information

The mutual information between the output com-
ponents is defined as

d
M= H(x,,.

i=1

X X)) =X H(y;)—H(Y) . (48)
j

Due to the fact that M is a measure of the amount of in-

formation between the components of the outputs, it is
also a measure of statistical correlations between the
components of the outputs. In fact, statistical indepen-
dence as expressed in Eq. (7) is then equivalent to [18]

M=3H(y)—H({=0. (49)
J

This means that in order to minimize the redundancy at
the output we minimize the mutual information between
the different components of the output vector. Due to
the fact that the herein defined structure of the neural
network conserves the entropy, i.e., H (y) =H(X)=const,
the minimization of M reduces to the minimization of
3 ;H(y;). The second theorem of Gibbs assures that the
entropy of a distribution has an upper bound given by the
entropy of a Gaussian distribution with the same vari-
ance as the original one. Using this theorem we can
reduce the problem of statistical decorrelation to the
problem of minimizing the upper bound of the entropies
3 ,;H(y;), i.e.,, the sum of the output variances (which is
the entropy of a sum of Gaussian distributions). If the
variance of each component is denoted by R;, then

minimization(M)=minimization { Tr[In(diag(X;)]} .
(50)

In other words, the cost function is defined in this case as

E=3In(X;). (51)
J

In the particular case that only second-order terms are
used in the cumulant expansion, the learning rule reduces
to Eq. (51). This expresses nothing else than the diago-
nalization of the second-order covariance matrix. In this
case, by transforming the cumulant expansion of the
Fourier transform of the distribution back,

—i(K,y,), iRVK —(x2k2)
P(yl):dele ll(e 1 1 1 1 )

exp
= R (52)
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we obtain a Gaussian distribution. Diagonalization of
the covariance matrix decorrelates statistically the com-
ponents of the output only if we assume a Gaussian dis-
tribution of the outputs. In the case of Gaussian distribu-
tions, minimization of the sum of the variances at each
output leads exactly to statistical decorrelation, but in the
non-Gaussian case only an upper bound is minimized.

It is important to remark that the optimal embedding
dimension is determined by number of points in the past
that are correlated statistically with the present. A stra-
tegy to measure statistical correlations is by trying to
decorrelate statistically (reducing mutual information or
expanding in higher-order cumulants, but not only linear
decorrelation, i.e., diagonalization of first-order correla-
tion matrix) and than seeing how far the past is needed to
decorrelate the present, or in other words, how many
points in the past are necessary to model (i.e., find the sta-
tistical correlations) the present. This technique is relat-

Figure 2 (a)
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ed to the ones proposed by Fraser and Swinney [32] and
the works of Liebert and Schuster [22] and Liebert,
Pawelzik, and Schuster [23] which formulate for the
detection of optimal embedding the minimization of the
mutual information. The learning rule for both decorre-
lation techniques can be easily expressed by the gradient
descent method

Sn +1)=6(n) —-2E(n) . (53)
ow
IV. RESULTS AND SIMULATIONS
In this section we present four examples. The first

three apply the theory herein developed for the modeling
of chaotic time series. The last experiment deals with
the modeling of coupled chemical reactions.

The first experiment concerns the chaotic time series

1 T T T e '.‘..‘;.A's ,.,~:w: T
.}5 . ';3:;.‘
0.9F ar 3
0.8F & Y,
0.7¢ " 4
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FIG. 2. Input and output space distribu-
tions after training with a one-layer polynomi-
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generated by the logistic map. In this case the noisy
logistic map was used to generate the input

(54)

where v introduces 1% Gaussian noise. It is important to
remark that the noise is not white but colored, due to its
inclusion in the iterative mapping. In this case a one-
layer polynomial network of second order trained with
the cumulant expansion techniques was used. The learn-
ing constant was 7=0.01, and 10000 iterations of train-
ing were performed. We have used 100 training patterns
taken between ¢ =2000 and 2500 and generated by Eq.
(54). In Fig. 2(a) the input space is plotted. Figure 2(b)
shows the evolution in time after training of the output
values of the neural transformation. As is clear from Fig.
2(b), the strongly correlated input (past and present of the

x,=4x(1—x;)+v

GUSTAVO DECO AND BERND SCHURMANN
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chaotic time series, i.e., embedding vector with delay
equal to two) is decorrelated. All the information was al-
located practically in one of the coordinates of the output
(y1), leaving the second (y,) merely for the representa-
tion of the noise (this last coordinate is practically con-
stant in time, meaning that the network extracted the
nonlinear correlation between the two inputs, i.e., a non-
linear PCA was performed). Analyzing the weights of
the trained network, the polynomial right-hand side (rhs)
of Eq. (54) is recovered. This means that the determinis-
tic part that generates the chaotic time series was
modeled, even in the presence of colored noise which was
decorrelated and allocated in the second coordinate of
the output. The second example applies to the Hénon
map [33] defined by the following system of iterative
equations

Figure 3 (a)
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X, 1 =1—1L4x2+y, , (55)

Yn+1—0.3x, . (56)

We analyze the variable x. In this case the exact
embedding is known just by inserting (56) in (55)

X, 1 =1—1.4x240.3x (57

n—1

which means that the required delay for modeling of the
variable x is exactly two points in the past. In this case
we take on purpose a six-dimensional embedding vector.
The goal of the experiment is to model the Hénon map
from experimental (simulated) data and to discover the
real required delay. We use in this case a polynomial
neural network of second order which was trained with
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the cumulant expansion techniques. The learning con-
stant was 7=0.01, and 5000 iterations of training were
performed. We have used 300 training patterns taken be-
tween ¢ =2000 and 2500 and generated by integrating
Egs. (55) and (56). Figure 3(a) shows the state-space struc-
ture of the attractor by plotting the two successive input
signals x,, x3;. Figure 3(b) shows the evolution in time
after training of each output component. It is interesting
to note that up to component three the output is constant
meaning that the network has figured out how to decorre-
late this output using the past. This indicates also that
two points in the past are sufficient to model the map. In
fact, the polynomial generated by the trained network
corresponding to output 3 is the rhs of Eq. (57). The po-
lynomials corresponding to outputs 4, 5, and 6 are also

Figure 3 (c)
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identical to the rhs of Eq. (57), i.e., the terms and inputs
too far in the past were automatically pruned by the
learning algorithm. Figure 3(d) shows the reconstructed
structure of the attractor by plotting the trained function
f3 of Eq. (12) as a function of x,. The structure plotted
in Figs. 3(a) and 3(d) are identical the perfect learning of
the structure of the attractor of the dynamical system. In
order to compare with the traditional PCA we plotted in
Fig. 3(c) of each output component after linear decorrela-
tion (PCA) for the evolution in time after training. As it
is clear it is impossible to decorrelate linearly the Hénon
map and therefore no constant outputs are observed.

The third example focuses on the same goal as the last
example but it is more difficult. The Mackey-Glass sys-
tem formally has an infinite number of degrees of free-
dom but its strange attractor has finite dimension. There-
fore it mimics a typical experimental situation. The delay
difference equation of Mackey-Glass [34] can be ex-
pressed as

ax(t—1T)
1+x9¢—T7)°

where a =0.2, b =0.1, and T =30. We use in this case a
polynomial neural network of order 2. The learning con-
stant was 77=0.01, and 25 000 iterations of training were
performed. We have used 500 training patterns taken be-
tween ¢ =2000 and 2500 and generated by integrating Eq.
(58). The input and output dimension is six and the tech-
nique for learning is also a cumulant expansion. The six
inputs are given by x(z—50), x(¢z—40), x(t—30),
x(t—20), x(t—10), x(¢t). We have chosen the delay
time equal to 10 in order to compare our method with the
results obtained by Liebert and Schuster [22] and Liebert,
Pawelzik, and Schuster [23]. The time delay 10 is ob-
tained by using the principle of maximal statistical
decorrelation as is thoroughly explained in Ref. [22]. Let
us note that in this case only a quadratic approximation
(the first two terms of a Taylor expansion) can be

x(t)=—bx(t)+ (58)
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modeled with this network, due to the fact that the neur-
al architecture in this example is a polynomial of second
order. The embedding dimension can be detected even
with this second order approximation by analyzing the
weight connections or output components after training.
Those weights which are negligibly small indicate statisti-
cal independence. The embedding dimension found is
four, in agreement with the results of Liebert and Schus-
ter [22] and Liebert, Pawelzik, and Schuster [23].

Figure 4 shows the evolution in time after training of
each output component. Up to component four the out-
put has a very low variance meaning that the second or-
der polynomial network has extracted an approximated
form of the correlation of these outputs using the past
four points. This indicates also that four points in the
past (embedding dimension) are required to approximate-
ly model the map by the second order polynomial. The
correlation cannot be totally extracted since the original
series is nonpolynomial and the network is a second-
order polynomial. This is the reason why the com-
ponents five and six of the output are nonconstant but
present still a small oscillation.

It should be remarked that, in general, our method
works well only in the case where the nonlinearity that
defines the dynamics may be approximated by a polyno-
mial. This implies that in the special case of a polynomi-
al dynamics the underlying equations can be accurately
extracted by a polynomial neural network. In other cases
a priori knowledge about the nonlinearity is necessary to
decide on the quality of the polynomial approximation.
Alternatively, a priori knowledge can be used to construct
a volume-conserving triangular architecture that corre-
sponds to the correct form of the nonlinearity.

The last example consists of the use of the symplectic
architecture of Fig. 1(b) in order to learn the kinetic con-
stants of a system of coupled chemical reactions. The
system used is for the synthesis of Bromide acid and cor-
responds to the following system of kinetic reactions:

Y1 1 Y2 4
WA run i
_ -
1O 100 200 300 400 t 0 100 200 300 400 t
Ya 1 Ya 1 FIG. 4. Outputs as a function of time of a
six-input and six-output neural network
0 WWWMM 0 WMWJWV trained unsupervised for extracting the
decorrelation between the component of a six-
] ; dimensional embedding vector for the
"0 100 200 300 400 t "0 100 200 300 400 t Mackey-Glass time series.
Ys 1 Yo 1
0 PN A A AMMAANN 0 MW WA A A~ AN AWM
- -1
0 100 200 300 400 t 0 100 200 300 400 t
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& [Br,)=ks[BrPP— K, [Br]

g—t-[Br]=2k1[Brz]—ZkS[Br]z—i-kg[HBr]—kS[H][Br] :
£, )=k [HP—k[H,], (59)
1) =2k [H, 1~ 2K, [H]+ ko [HBr] —k, [H][Br]

gt—[HBr]—':ks[H][Br]—kg[HBr]

associated with the elementary chemical reactions
kl
Br,«<>2Br ,
kS
kg
H,~2H . (60)
k7
kE
H+Br<HBr
k9
where the real kinetic constants are

k,=9.2X107°%, ks=4.0X10", k¢=9.2X107°,
(61)
k;=4.0X10" , ky=1.0X10", ky=1.0X107°.

Equation (61) was integrated by the Gear method due to
the high stiffness of this system for the generation of the
simulation data. The equation is modeled in the symplec-
tic structure of Fig. 1(b). The first five inputs are the con-
centrations of time ¢, and the last five inputs are the
flows. We have used in this case the minimization of the
variances of the last five outputs (mutual information ar-
gument). The training constant was 17=0.1 and the net-
work was trained during 150 000 epochs using 3500 train-
ing patterns obtained from the generated simulation data.
After training, the following values for the kinetic con-
stants were obtained:

k,=9.19%X1073, ks=3.92X10"%, k¢=9.19X107°,
k;=3.9X10", kz=1.01X10", ky=1.05X10"7,
(62)

which are in close agreement with the real ones given by
Eq. (61). This close agreement means that the rates of
change of the concentrations (as a function of the evolved
time) obtained from the original and learned equations
are extremely similar as is displayed in Fig. 5 (in fact,
they are indistinguishable).

V. CONCLUSIONS

In this paper we have focused on the problem of mod-
eling time series by learning the statistical correlations
between the past and present elements of the series in an
unsupervised fashion. An information-theoretic-based
architecture and learning paradigm was introduced. The
neural architecture employed possesses only one layer
and a triangular structure in order to transform elements
of the input by observing only the past and to conserve
the volume. This permits us to devise a transformation
that guarantees transmission of information without loss.
Two alternative methods were used for formulating a
learning rule that decorrelates the output components of
the network. After decorrelation between the output
components, correlation between the elements of the time
series has been extracted by analyzing the trained neural
architecture. As a consequence, we were able to model
chaotic as well as nonchaotic time series.

A critical point in modeling times series is the deter-
mination of the dimension of the embedding vector.
With the method described in the present work it is pos-
sible to detect the embedding dimension by extracting the
correlations of remote past and future. We have tested
our methods and techniques on various representative ex-
amples, including chaotic time series and chemical reac-
tions.

Our work makes extensive use of fundamental concepts

FIG. 5. The rates of change for the concen-
trations of Br,, H,, and HBr as functions of
time. The curves obtained from the original
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of information theory, nonlinear dynamics, and neural
networks. In particular, it builds upon the seminal work
of Fraser and Swinney in that it employs the mutual in-
formation concept for the detection of correlations in a
time series. It goes beyond other related works by intro-
ducing new concepts from the theory of unsupervised
learning in neural networks. These concepts enable us to
determine at the same time the relevant (embedding) di-

mension of chaotic dynamics and the equations describ-
ing it, and hence they are very powerful. This feature is
of particular importance when analytical models of the
physical process at hand are not available but experimen-
tal data are available ( data driven modeling). We believe
that the methods developed in this work offer a instru-

- ment for analyzing the real world data of complex non-

linear processes.
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